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ABSTRACT

Two deterministic methods of placing previously unobserved
(backside of the moon) landmarks into reference coordinates from
a lunar orbiting vehicle are presented. The recursive navigation
technique developed by Dr. R. H. Battin is expanded to include
simultaneous reduction of estimation errors in landmark position
and spacecraft position and velocity. In addition, the use of a
period measurement as a navigational aid is developed. Computer
results, indicating the effectiveness of the techniques of error
reduction developed, are presented, Comparisons between results
of error reduction by present six dimensional techniques and re-
sults using the techniques developed in this thesis from computer
runs are included. These illustrative computer results are pre-
sented as a check on the validity of the theoretical expressions.
Recommendations for the use of the techniques derived in this
thesis are made.

Thesis Supervisor: Richard H. Battin, Ph.D.

Title: Assistant Director of the MIT Instru-
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Chapter 1

Introduction

During the past several years, the problemsof guiding an Apollo
vehicle ‘duringithe midcourse and circumlunar phases of its miésion
have been studied at the MIT Instrumentation Laboratory. Dr. R. H.
Battin hag developed a comprehensive theory of recursive navigation,
based upon perturbatibn‘theory. This theory pfovides a method of
extrapolating the best estimates of position and velocity deviations
from a reference orbit forward in time; and, by'use of an optimum
linear e‘stimat'o'r’- as a recursion operator, combining these extrapo-
lated estimates with newly acquired information to produce an im -
proved estimate. (1) * '

The theory of recursive navigation has recently been applied to
orbit determination by Gerald M. Levine, (2) In so doing, the
reference orbit has been defined as that ti‘ajector'y the spacecraft
would follow if the estimates of position and velocity were correct.

In general the parameters of the reference orbit are different from
thoseldefining the avct'uéil orbit, These différence‘s’ are referred to as
the estimatjon errors. The estimation errors propagate as a function
of time and to minimize these errors, it is ne(iessary to incorporate
new navigational measurements and, from the new infbrination obtained,
redefine the reference orbit.

Navigational measurements may be made in a number of ways
during circumlunar orhit. The most common method is the use of
angular measurements from an inertial reference to either the lunar
horizon or a known landmark. The use of time ,a:-", a measuremént was.
incorporated by R. V. Keenan and J. D. Regenhart by observation of
star occultations. (3)

Angular me;asurements from an inertial reference to known land-
marks have previously been considered limited to those lunar land-
marks visible from the earth, As pointed out by G. M. Levine, the
effectiveness of this method is reduced by the lack of knowledge of the
exact positions of the 1andmarks - particularly if the landmark is
observed several times. |

&

| "‘Nu}nbers in parenthesis refer to references at the end of this paper.



This thesis concerns itself with three problems:

1) to develop a procedure for placing previously unobserved
(backside of the moon) landma;'ks into reference coordinates from
observations taken from & lunar orbit.

2) to subsequently use these landmarks as an aid to navigation
by expanding recursive navigation techmques to snmultaneously minimize
orbital position orbital welocity and lunar landmark estimation errors.

- 3) to investigate a new method of time measurement as a means
of updating the reference orbit. _

The 1nvest1gation cf 1) and 2) above requires that unknown 1aud¥ |
marks be deterministically placed in reference coordinates during. the
first orbit of the circumlunar ﬂight.* The reference orbit may be upj
dated by additional navigational measure’men’cs during this first orbﬁ:._
Afterj the 1andmark position is estimated, and on repetifive crbits, ‘the
landmark is -ob-served and Weighted agains’ﬁ pan obServations to minimize
the landmark uncertalnty The best estimate of the landmark is then
used to lower the uncertainty of the reference orblfc Usmg thls techm—
que, repetitive obsei'vations of the same landmark becomes an asset.
The mmlmlzatlon of landmark and spacecraft estimation errors is
mmul’caneously accomphshed through a nine dlmensmnal analysis.

The benefits of placlng an unknown landmark into reference coor-
dmates Wlth mlnlmum error are two fold Flrst the landmark now
known may be used as an aid ta clrcumlunar fllghts Secondly, the
landmark may be used as a control point from which positions of other
landmarks may be mapped through photogrammetric techniques during
a 01rcum1unar flight.

Progect ANNA(Z’J‘) (5) (the combmed effort of the armed forces and
NASA) has 1nvest1gated the problem of placing a landmark in geodetlc
coordmates with minimum error by use of orbiting satellites. A geo-
metric method of solving this problem consists of performing a tri-
angulation in space and thus determine the positions cf a number of
observing stations whose positions are not precisely known. This
method requires precise knowledge of the satellite's orbit and a series
of ground stations. This procedure would be applicable to positioning
lunar landmarks only after observihg stations had been placed on the
moon. Although less accurate, the placement of lunar landmarks in

* Throughout this thesis the terms circumlunar flight and lunar orbit are
considered analogous.



selenographic coordinates by use of navigational measurement from
an orbiting spacecraft represents a more expedient method of placing
lynar landmarks with minimum error. There-in exists the value of
this thesis.

Investigafion of the third problem of the thesis requires the
determining of a new geometry vector associated with the new time
measurement. Time is incorporated by measuring the actual periad
of a circumlunar orbit and comparing this to the estimated period
associated with the reference orbit. By noting the difference or de-
viation in period, the astronaut is able to gain information abouf his
position and velocity. The development is made in Chapter 3 and
computer results are included in Chapter 4.

Throughout this paper, error apalysis will be of the mean squared
technique consistent with the method followed by Dr. R. H. Battin in
his analysis of midcourse guidance.

Notational conventions used also agree with those used in Dr.
Battin's work. Thig paper deals with three, six and nine dimensional
vectors. A column vector is represented by a lower case underscored
letter,e. g. r, v. Matrices are denoted by capital letters, e.g. E.

The transpose of a vector or matrix is denoted by a superscript T, e.g.
rT, ET.
and the expected value of a random vector e is indicated by an overscore,

s

e .

—

The scalar product of two vectors s and 1 is written as §_Ti,



Chapter 2

Deterministic Methods of Placing

Unknown Landmarks

2-A. General

Unknown lunar landmarks may be placed into inertial coordi-
nates by measuring the veéctor from a known point in orbit to the land-
mark. * This may be done with a single sighting, using optics to deter-
mine angular measurerments from the inertial reference and radar to-
determine range to the landmark. The inclusion of two optical sightings,
both determining separate direction consines renders the use of radar
unnecessary in plotting the landmark.

The inertial reference discussed here is luhar centered with the
x-axis along the ascending node of the mdon's equator on the écliptic,
the z-axis along the north polar axis of the moon and the y-axis in the

e ats
<

lunar equatorial plane completing the right-handed system. -

¢—————— Moon's Equatorial
Plane

¢~ FE cliptic Plane

Ascending Node

Fig. (2-1) Inertial Reference

"Due to physical limitations, observations are not taken by sextant
from star to landmark during circumlunar orbit. Instead, the inertial
reference system is carried aboard the spacecraft in the form of a
gyroscopically stabilized platform. Therefore the observation from
the inertial reference to the landmark is equivalent to the simultaneous
measurement of the angles between the landmark and two stars.

*_:&ny other inertial reference system is equally valid and involves only
ugsing different rotational transformations to convert from inertial
coordinates to selenographic coordinates. (6)



Considering the lunar centered inertial and selenographic coor-
dinate axes coincident at epoch, rotation between the two axes systems
is about the z axis only. (Precession of the lunar line of nodes is con-
sidered insignificant over the duration of the circumlunar flight).

The rate of rotation is considered constant with a value of 27

radians per sidereal rotation. The angle of rotation is

Q = 2'”- (‘t _ij- ) ‘ (2_1)
sidereal rotation
where T is the epoch.
At any time t, the inertial reference is related to the seleno-
graphic referénce by
£I - T ES (2-2)
where
cos §2 sin @ 0
N = 1-8inQ ‘cosf2 0 (2-3)
0 0 0

Directional sightings are made by incorporating angular measure-
ments from the reference inertial axis. The result is a set of direction
cosines. Let 6 be the angle from the XI~aXis to the line of sight, ¢ be
the angle from the yI-axis to the line of sight, and ¢ the angle from the
zI—aXiS to the line of sight. Note that it is only necessary to measure

f and ¢ The angle ¢y may be found from the relationship.

cos2 o + cos2 ¢ + 00821[/ =1

L.OS

I
X

Fig. (2-2) Direction Cosines

~5-



2-B Radgr Method

By utlizing angular measurements and a slant range, high pre-
cision radar, the position of a landmark can be estimated with a single

observation.

From Fig. (2-3), it can be seen that

I
g =r + (radar range) cos 6

I_ I e
Qy =Ty + (radar range) cos ¢ (2-4)
,QZI = rZI + (radar range) cos ¢

if measurements are exact and position of spacecraft is precisely
known. In the above equations, ( I.s defined as the inertial compo-

nent of landmark position and rI the inertial component of space-

craft position. ZI Radar Range
I
z
//
&
I / , 6
I
~£ —3, T~ y
I
| KL
S I
/ 7

-

Fig. (2-3) D.etermiriing Landmark
Position Via Radar Technique

Of course, the measurement of angle and radar range cannot
be exact, nor will the position of the spacecraft be known precisely.
Taking the error in landmark to be represented by €, in position by

e, error in radar by err (r) and the error in angular measurement
by q. We have



E; = ei + err (I‘)I cos 8 - qeI sin 6
E;T- eI-l-err(r)I cos ¢ -qd)I sin ¢ (2-5)
ei = eZI +err (r')I cos ¢ - qwI sin ¢

These three components make up the landmark estimation error
I
€g -

2-C Angle Only Method

While the radar method outlined in the previous section has
the advantage of estimating the unknown landmark position with
only a single sighting, it has several practiical limitations. These
are briefly:

1. The radar equipment is both bulky and heavy.

2. The error in radar (doppler) glant range is approximately
2% of the range.

3. There exists a difficulty in having the optics and radar
pinpoint the same point of landmark. ‘

For these reasons, an alternate method utilizing two sightings
will eliminate the necesgity of a radar.

From Fig. (2-4) it is readily evident that

I_ - -
L. = rxl +range, cos f, = rxz + range, cos 0, (2-6)
ﬁ; = ry1 + range, cos ¢y = ry2 + range, cas ¢, (2-7)

I, ‘ - -
L = rzl + range; cos ¢ - rzz + range, cos ¢, (2-8)

Multiplying Eq. (2-6) by cos d)l and Eq. (2-7) by cos 6., taking the

difference and solving for range 2 results in

1’

er cos¢>1 -r
range, = e :

cos 91 - er cos ¢1 + ryz cos 91
: - (2-9)
cos ¢, cos 92 - cos ¢, cos 91

1




I

X

Fig, (2-4) Defermining Landmark

‘Position Via Angle Only Technique
I:{amge2 may also be found using simultaneously Egs. (2-7) and (2-8)
or (2-6) and (2-8). Thus two redundant measurements of range,
may be averaged with Eq. (2-9) to give a mean value of range,.
Further, range; may be determined from the same si\multaneo,usv
equationg and averaged to result in a mean value -of range, .

Since r (position of the spacecraft) is estimated and the angles
measured directly, substitution of either r'angel or rangez into
Egs. (2-6) through (2-8) results in determination of the landmark
in inertial reference since

4 = r + range (2-10)

-8~



Once again, the errors in measurement and errors in esti-
mation of spacecraft position result in a landmark estimation
error. The expression for landmark error in this case, is identical
with Eq. (2-5) developed in the preceding section, except that the
error in range is a function of spacecraft position and angular

measurement. This is developed in detail in Appendix A,



Chapter 3

~Simultaneous Minimization Technique

3-A Introduction

~This chapter expands G. M. Levine's work to-‘include minimi-
zation of position, velocity and landmark estimation errors. In addi-
tion, it will consider star-horizon, and measured period as well-as
star-landmark as the possible types of measurements appropriate
to a circumlunar orbit. *

The basic problem of circumlunar navigation is six dimensional,
where the state vector X is divided into position and velocity vectors,
r and v respectively, where both are three dimensional. To expand
the procedure to include the landmark vector { requires a nine
dimensional analysis,

For a detailed treatment of the six dimensional circumlunar

navigation problem, the reader is directed to reference (2).

3-B Expanded Midcourse Navigation Theory

Using the deterministic method of placing landmarks, discussed
in Chapter 2, an estimate of the unknown landmark's position can be

determined, where

[o
Lo B

2] (3-1)

o

[

N g

and the errors in the estimate are defined as

stz ale
Etd

I
€
X
EQI= ' e; (3-2)
I
€
Z

"The word "'star" is used simply as shorthand for a inertial reference
axis.

2
sheske

For ease of notation the reference coordinates will be inertial unless
otherwise noted.

-10-



The state vector x is defined as

|

(3-3)

I
4
i<

fr=

a 9 X 1 matrix, where r is the spacecraft position, v the spacecraft
velocity and _g_ the landmark position. In a like manner, the de-
viation of the state vector is described as

o
|=

(3-4)

o
|<

o
fr

Since this navigation prqcedure is based on linear pertur-
bation theory, it is necessary that the deviation vector, éx, re-
main small. Therefore, the reference orbit is defined to be that
trajectory the spacecraft would follow if the estimates of r and v
were correct; and the reference landmark position is defined
by £. After each measurement the reference state vector is re-
defined after inclusion of the measurement data.

The notation 6_%_ is introduced. This represents. the estimate
of the deviation vector and is zero except instantaneously after
incorporation of the measurement data and before the reference
state vector is redefined. Lettiﬁg primed quantities indicate
values before a measurement and unprimed quantities indicate
values after the measurement.

1

XxX=x + 65}
-7 - (3-5)
]
6x=6% - 6%
The estimation error is defined as
e
Zr
A 1
e=8xX-6x =-6x= A (3-6)
£y

-11-



where:
e is the estimation error of position

A _ is the estimation error of velocity

) is the estimation error of ’i:he landmark

The extrapolated estimation error is

¥ !

e = -6x (3-7)

In using the mean square technique of error analysis, it is

necessary. to define a correlation matrix E of the error vector e

T T T
Cr&r E&rly  EpE
S A T T T
E=ee Ay & L - Ay &4
T T
€9 &y €9 Ao €9 €p
(3-8)
By 2 3
= | By 5 6
B, By By
where E is a 9 X 9 matrix and each E_ is a 3 X 3 matrix.
In a like manner, the extrapolated correlation matrix is
T
E = e e T (3-9)
!
If Q is the measured quantity based on the reference state x,
there will be a deviation in the measurement § Q caused by the de~-
viations of the actual state vector from the reference state vector.
Define h as the geometry vector which satisfies
1
5Q=htsr (3-10)

1
to first order in § r.

~19-



The geometry vector must be nme dimensional when consider-
ing the nine dimensional state vector x Considering this nine di-
mensional geometry vector as b

o’
i
e i

(3-11)

1=

where h is the geometry vector associated with position, d the geo-
metry vector associated with velocity and k the geometry vector
aésociated. With landmark position. -

- When considering star landmark measurements d = o (zero
vector) and k = - h. For star-horizon or star occultation measure-
ments both c? and k are zero vectors. . When considering period (time)
measurements only k= 0 See Section 3 -E.

For the purpose of this derlva’clon, b will ‘be defined as

_,11 ]

|
11
lo

(3-12)

and
T !
5QFb" 6x (3-13)

The components of b are the partial derlvatlves of Q with resgpect
to the components of the deviation vector § X .

Since the reference state vector has been defined by our best
estimates, the predicted value of 6§ Q is, of course, zero, Defining
) 62 as the measured deviation, it is noted that

5Q=6Q+q (3-14)

where q is the error in the measurement.

In the next few sections, a slightly expanded version of Dr. R.
H. Battin's Recursive Navigation Theory will be developed. This tech-

-~13-~



mque will enable, as each measurement is made, the state vector
X and the correlation matrix E to be updated by the sunple recur-

sive formula's

1
) EbéR
x=x + — (3-15)
bTE b +q°
and
1 t
. EwEnT
E=FK - i - (3‘16)
1
bTE 13+?

Between measurement times, the state vectér must be extrapo-
lated-and the correlation matrix must be propagated. It will be shown
that this can be dccomplished by

X=X (3-17)
t
where x is simply the integration of

LW =v®

dt

d )

—[v{®)] =g, t) (3-18)
dt

L@ =nw v

dt '

where g (r, t) is the graifitational acceleration vector and _rl(g, t) is
the rotation velocity vector of the landmark caused by the moon's
rotation.
To propagate E
H
E=E (3-19)

t .

where E 1is obtained by integrating

_d‘i [E@®] =M(r, L, ) E@) +E@® MT (r, §, 1) (3-20)
t

-14-



and M(r, £, t)is defined as

o) I e}
M(z, 4, t) = G(r,t) O O (3-21)
O o) N(¢, t)

where I is the 3 >< 3 identity matrix, O the zero matrix, G(_r_'_, t) the
gravitational acceleration matrix, and N(_g, t) the rotation matrix,

3-C The Optimum Linear Estimate

The purpose of this section is to develop Egs. (3-15) and (3-16).
The optimum linear estimate of the deviation vector 6 x,

assuming all errors are uncorrelated, is
5X=W 6Q (3-22)

where the weighting vector w is to be determined.

-w, the ~weighting factor, will be chosen so as to simultaneously
minimize the mean squared position error, mean squared velocity
error and the mean squared landmark error.

To solve for position, velocity and landmark errors as functions
of the weighting vector, use Egs.(3-6) and (3-22) to get

1

t

e (w) wﬁ@—ézc_

1

W (6Q+q) - 6x

(3-23)
T t
= w (b éx+q -sx
1 1
= e -wble +twgq
Now, the correlation matrix E defined by Eq (3-8) may be ex-
pressed as a function of the weighting vector was
E(w) =e(we @
' T ! T T (3-24)

~15-



where

, ‘
a=_11TE _]?,"'(?

(3-25)

If we define w as 3 three-dimensional vectors partitioned, such that

k=
£t
i

1 2, E3
E- (B, E, E
B, E; By

E (w) becomes

1 ' 1 j T Ti 1 1
By By By -"—V1\ e B
1 i 1 H 1 1
Ew =B, Ey Eg] - | W, Ey Eg
i 1] 1] f t
E, Eg By Wa \Er  Eg
! ! ' T T T '
1 By Eg) fhyo jwy oWy -VYS; 1 ‘W
1] i
B, B, E|lo +a | w,
H i 1
7w Eg Eg/ \-h W3

-16-
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1 ot 1
El EZ E3
1 1 1
E(lv) = E4 E5 EG
H 1 1
E; Eg Ey
T ! T T T, T !
(w,h El-glg E7) (_vyl_ll E2 Wlh E )(Wh E3-—W1_rl_ Eg)
Tt T t T ! ) T, ' T ! T !
-t (w E E1 - W, h E7) (w E E;2 _vgzh E8) (_vgzh E3 - th Eg)
T ! To' T I
! T ! T ! T ! T ! T T
(El_lgwl - E3E_vgl ) (E hwy - Eskll’z ) (E1EY_V3 EShV_VS )
T ! T T ! T T
N (E4._._1 - E P_.Vi’l ) (E4EYY2 - Es_kl."ffz ) (Ejhwe - Es_l}__"’l’;», )
(Ehw, T g hW Iy Enhwl -E, hwl) (Echwey - B hwl)
v AWy - Eghwy ) (Eghws - Eghwy
T T ™
i wi¥, w V_VS
T T T
+ a Wo¥Wy Y¥ol¥Wy Wol¥s (3-28)
T T
¥3 ¥y E3¥%; ¥34

It is obvious that

T ! ! T
- (w, nT E -w/h'E )-(EIE_V_V_l
T

' *E'hWT)‘Fa(W WT)
By 32 15
1 t
E5(W) = E5 - (_V_Vz_l'_l; E2 - th E ) (E
1
9

T

hvv2

4P - E

T
BEW )+a('\zv2 2)

- (wohIE. - wohTE,) - (E-hwa - B hwl) +a (W, w.
Wal Hg " W3l g =¥3 g2 ¥3 * W3 Y3

Therefore since El is a function of only Wi E5 a function of only Wy
and E9 a function of only Wa, it is formally legitimate to treat the
mean squared error in the estimate ez (w) as the trace of the nine-

dimensional correlation matrix E (_vg), The mean squared position,

-17-



velocity and landmark errors are given by the traces of El’ 5
and E9 respectively.

From Eq. (3-24)

tr [E(w)] = tr [E - 2wb?

t .
E+aww]

To minimize tr [E(w)] let w take on a variation é§ w, and obtain

6 tr [E(W)] =2tr[éw (ay_vT - p_T E')]

Setting this equal to zero, it is clear that for § tr [ E(w)]
to vanish for all § w, w must take on the value
!
E'D
weE —

a

Equations (3-15) and (3-16) follow immediately by substituting
Egs. (3-30) and (3-25) into Eqs. (3-22) and (3-24).

(3-29)

(3-30)

To show that Eq. (3-30) yields a minimum and not a maximum

or inflection point, replace w by w + Aw into the above trace
equation and use Eq. (3-10) to obtain

. . ) 1

tr [E(w +Aw)] = tr [E' =2 (w+Aw) _b_TE
_+a (_v;_z +A_vir) (v_vT -’I-A_WT)]'

! T

=tr[E -2a(w+Aw)w

+. a(w+Aw) (_v_s_/T + A'_\YT)]

1

tr [E' - a(w + Aw) (__V\_rT— Ay_vT)]

T

1]

H
tr[E ~aww™ +adw A_ng]

i

tr [E(w)] +atr [ Aw Aw']

3-D Extrapolating x and E in Time

To complete the derivatibn, the time Vari_ations of x (t) and
E(t) are required.
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The differential equations of motion of the spacecraft
and landmark are

L@+ srm] = vt + sy ()

o———

dt
Livi)+ vt =g+ 6r, 1) (3-32)
dt ’
Lew+ s0®]=n(@+sg, 1)
dt
where g (5'_ +ér, 1) is the gravitational acceleration vector and
n (£ + 6 -_g, t) is the velo‘city rotation vector of the landmark due
to the moon's rotation, such that
p_(g_ﬂ-éjll_, t) ='_vs_rmx(!._+6£) (3-33)
w _
n{Ll+s4d,1)
4
Fig. (3-1) Lunar Landmark Rotation
The differential equations of motion of the reference
state vector are
L rw =vw
dt
(3-34)

L v =g (et
dt

e =n@
dt
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Subtracting Egs. (3-34) from (3-32) gives

4 s = svid

dt

drsvn=g+or,t)-glt (3-35)
dt

L @] = n(Q+68,1)-n (L)

dt ‘

Using linear perturbation theory on thé second and third equations
above, results in

< 5v(0)] = G (xr,t) 6 (1)

dt
o (3-36)
1L =N sL WD
dt
where
6gX/6x {igX/éY : 6gX/6z
Glr,t)= |6 | 5g /6 5
(r,t) gyléx gy/ y gy/az
6g,/6x 5g,/8y fdgz/éz
(3-37)
6nX/6!ZX 6nx/6£y 5n 154,
N(L, t) = any/a by enylédy 6ny/6 L,

an/éﬁx énznlélﬁ__y 6nZ/5£z

where x, y, z are the components of the position vector r (t); g

g, &, the components of the gravity vector g(r, t); £ ﬁy and ¢,

the components of the landmark vector g(t); and Ny ny and n, are

the components of the rotation vector n (£, t).
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Equations (3-36) and (3-37) can be combined into a 9 X 9
perturbation matrix. Thus

L olsx®] =M (r, £,D6x () (3-38)
dt
where
0 I O
M(r, 0,9 = |G, © 0 (3-39)
0 O N

The matrices I and O are the three-dimensional identity and
zero matrices respectively.
The estimation error was defined as

g(t)'= - 6x ()

except at discrete instants of time. Therefore

— [e ()] = M (r, 4, t) e (t) (3-40)
dt ‘
Now
E(t) = e(t) e (1)
and
SEW] = S[e®] ett) +elt) S{el(t)]
dt dt dt

= M(r, LD e® el (t) + e(el ()M (r,g,1)

M(r, L, E() +E(t) M7 (z, £,) (3-41)

Integration of Eqs. (3-34) and (3-41) determine the reference
state vector x(t) and the correlation matrix E (t) respectively. Step
changes occur -at measurement times and are calculated from Eqs.
(3-15) and (3-16)-
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3-E  Measurement Geometry Vectors

Each particular method of measurement has a particular geo-
metry vector associated with it. Thus the b ve4cto'rA alone charac-
terizes the type of measurement.

1) Star-Horizon Measurements

Fig. (3-2) Star-Horizon Geometry

Reference (7) describes the analysis for determining the geometry

vector associated with this measurement.

Where n represents a unit vector in the direction from the
spacecraft to the star, m represents'the unit vector along the
vector z and p representé the unii vector in the plane of the mea-
surement and perpendicular to the line of sight to the lunar horizon,

this reference derives the geometry vector h to be

P
hs ——— (3-42)
Z COS ¥

In nine dimensions this geometry vector is

p

Zz cos v |
b= Q
o
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2) Star-Landmark Measurements

Fig. (3-8) Star-Landmark Geometry

Reference (2) describes this method in detail and derives
the three-dimengional geometry matrix from Fig. (3-3) to be

n - 2 (3-44)
L
where p is in the plane of the measurement and perpendicular to
the line of sight to the landmark. The unit vector n is defined as
before and ug, is a unit vector in the direction from the spacecraft
to the landmark.

The geometry vector in nine dimensions is
(3-45)
where k will be shown to be approﬁcimately equal to -h.
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Referring to Fig. (3-4) where the tilta symbol (A) represents

best estimate and subscript (A) reﬁfes'ehts actual

~ kesr
tan vy = SV (3-46)
L
by small angle approximation, and
~ -kesL
tan ¢ ¥ —— =gy
L
by small angle approximation. (3-47)
It is obvious that the deviation in angle is a function of both “

position error in orbit and position error in landmark.

6A=A1’—AO

(3-48)

1

o)
+

2

the distance between landmark and spacecraft is large enough in
comparison to the deviations in spacecraft and landmark devia-

tions.to make triangle _

AN

S A ML

approximately similiar to triangle

N

therefore within this limitation

1R

B (3-49)

a

where 3 is the deviation in angle measurement because of an esti-
mation error in landmark. -
“ - 4 is the deviation in angle measurement due to an estimation

error in orbital position, Thus

e

(3-50)
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P o LA

Fig., (3-4) Geometry for Nine Dimensional
Analysis of Star-Landmark Measurement
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and k is approximately -h.

3) Period Geometry Vector

The astronaut may use an additional measurement to obtain
information about his true position and velocity in moon-centered
inertial space by comparing his estimated period with the actual
period of his orbit. This method requires the use of a precision
time source and optics since references for initiation and com-
‘pletion of the period measurement must be determined.

Consider the orbit to start at the position in inertial space
where the spacecraft passes directly over the landmark. The
completion of one period occurs when the spacecraft returns to
the same position in inertial space. Meanwhile the landmark
will have rotated in inertial space during the elapsed time of the
measured period.

For convenience, the inertial reference axes and seleno-
graphic reference axes are considered coincident at the start
of the period measurement. Rotation of the selenographic co~
ordinates with respect to the inertial reference coordinates is

given by Egs. (2-2) and (2-3).

S I
z Z

H

S
X

Fig. (3-5) Displacement of
Coordinate Systems
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the estimated angle Q is described in radians as

FANE 3
2r (B’

Q (3-51)
A
where Arepresents the siderial rotation period of the moon.
The landmark rotates through the angle Q. The distance of
rotation, however, varies as the cosine of the selenographic-lat-
itude.
Rotational distance = 2L ‘1, cos L (3-52)
A
where ry is the distance from the center of the moon to the land-
mark. : I
oo A7
-
I
Fig. (3-6) Expected Angular Measurement
for Completion of a Period Measurement
From Fig. (3-6)
_ r, sin B
A=sint |4 (3-53)
c
where
c=\/r2+rﬂ2 -rr, cos B (3-54)

-

“The tilta represents an estimated value.
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and . _
360°
A

B =

P cos L.

Angle ﬁ is the angle which the astronaut estimates will describe
the orbital completion reference.

There are three errors that appear in the measurement
period. Two are associated with the angle and the third is the
clock error. Angular errors occur through the imperfections
of the measuring instrument and also because of uncertainty
of latitude of the landmark which causes an uncertainty in B
and hence an uncertainty in the angle R, This takes the form
€y. All of these errors are treated as components of the error

in period measurement.

eP=ag+evytet

The pefiod of & conic 1s a function of the semi-major
axis of the orbit.. According to Kepler's third law of celestial

mechanics

a3
P= 27 —_

7]

where a is semi-major axis and u is the universal gravitational
constant times the combined mass of the system.

The energy' of an ellipse is negative. Specific energy

2
g:l—l-'.l-
2 r

~From the vis-viva integral

Combining Egs. (3-57), (3-58) and (3-59( the equation for

the period can be put in terms of energy as

(3-55)

(3-56)

(3-57)

(3-58)

(3-59)

(3-60)



Partial derivatives of the period results in

sP= 2F__ 5 (-2p) (3-61)
0(-2%)
and
6(-28) = 9(-28) s5r + ﬁ!:%ﬁl. &§v (3-62)
or ov

Carrying out the operations indicated by Eqs. (3-61) and
(3-62) readily leads to

;-3u27rxf-§

6P : or
4 r.2 53
(3-63)
_3 urvnN-2§ 5v
4 g3
From the relationships
2
rer =r
and (3-64)
_ .2
Y;O X-—V
by taking partial differentials
re 5_{'_
ér =
r
and (3-65)
Veodv
6v = —
v

where § r and 6 v are components of the position deviation and
velocity deviation vectors along the reference position and velocity

vectors respectfully.
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The geometry vector is thus shown to be

p_: (3‘66)

je

where

L. -3 u® wN3E
- 4 r3 g3 -

and is directed along the reference position vector. And

Note that the use of this method is applicable only after one orbit
has been completed.

3-F Position, Velocity and L.andmark Correlations

Equation (3-8) defined the matrix E as

4

e_e T e_A ¥ e_e€ T
—r—r —r=v —r—
_ T T T
E = Avgr }.Vlv Z&—ij—ﬂ,
€,¢ €, T €€
{1 —f=v =0=¢
El E2 E3
= E4 E5 E6
E, Eg E,

where each subscripted E is a 3 X 3 matrix.

Landmark estimations errors are defined by Eq. (2-5)
as
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€X=ex+err(r) cosG—qe §in9

= e_+err(r) cos ¢ - sin
Sy~ %y (x) 9 -9 ¢
€Z=ez+err(r)gosw-%,sin¢

The calculation of E, is made using the mean squared technique

9
for each landmark under consideration. The matrices E, and E,
are considered initially zero. ‘However, since E1 and E9 are

initially finite the matrices E, and E, take on finite values there-

after. Cross correlation matrices E3, E E7 and ES are some-

what more complex. . °
When considering range to be determined via the radar
method as discussed in section 2-B and where errors in space-
_craft position and velocity are considered uncorrelated to range
errors and angle measurement errors,the cross correlation

matrices are statistically

E.3 = EpEp = ELEr 7 El
T T
E_. = M_e€ = A_e = K
6 =v={ —v—r | 4 (3-67)
T ™ _
E’? Sy T OEpEr T Eq
- T _ T _
E8 " S-.QZ\—V - -ei-r?iv - E2

The above relationship are valid for placing the landmark and
using the same landmark to update the matrix E. However, after
leaving the landmark under consideration and after utilizing other
navigational measurements before returning to the vicinity of the
original landmark, the estimation errors in position and velocity
of the spacecraft are continuously updated and become, in essence,
uncorrelated to the landmark errors after the initial orbit.

Hence on the second and all subsequent orbits the cross

correlation matrices can be considered as

E,=E,=E,=E,=0 (3-68)
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Chapter 4

Statistical C_omputer Results

4-A Key to Figures in Chapter 4

Key to Figures (4-1) through (4-10)

1) fe———k

4) &——0—-—-—0-—A

5) E— — —i3]

B) st — s >

N(Deesess ()

Typical results using six dimensional techniques
for error reduction in circumlunar orbit deter-
mination, Star-landmark sights used during
frontside transit and no measurements used
during backside transit.

The same as 1) above with the exception that 5

star-horizon measurements are used during

backside transit.

Results using nine dimensional technique for
which star-landmark measurements are used
during frontside transit and no backside measure-
ments are made. (Three sightings taken to each
landmark).

The same as 3) above with the exception that,
during backside transit, landmarks are placed
and later used for star-landmark measurements
(Two sightings taken to each backside landmark).
The same as 4) above except three sightings are
taken for each landmark (frontside and backside).
The same as 3) above with the exception that 3

to 5 star-horizon measurements used during
backside transit.

The same as 5) above except that 3 to 5 star-
horizon measurements are also used during

backside transit.

Key for Figures (4-11) and (4-12)

8) @o— « —B

Typical results using six dimensional technique
for error reduction in circumlunar orbit deter-
mination. Star-landmark sights are used during
frontside transit and 5 star-horizon measure-

ments are used during backside transit.
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9) @————@ Results using the nine dimensional technique

for which star-landmark measurements are
used during both frontside and backside transit.
(Two or three sightings taken to each landmark).
10) & — — = Results using nine dimensional technique for
,_Whlch star landmark measurements are used
during. front31de measurements, and for land-
marks which are placed and later used for star-
1andmark measui'emehts‘vduring backside transit.
Péri.od r_neasure'msnts_} are also included for error
reduction. (Twoor three sightings per landmark).
11) @qc soe @ Results using nine d1mens1ona1 technique for
; which star- 1andmark star-horizon and period

measurements are all made.

4-B General

The combination of star&andmark measurements during lunar
frontside transit and star-horizon measurements during backside tran-
sit has been considered as one navigational procedure for optimum
orbit determination during circumlunar flight.

Both techniques are limited in their ability to reduce estimation
errors of the state vector because of instrumentation errors in mea-
suring equipment and also because error reduction is not along the
~ line of sight of the measurement but perpendicular to it.

Effectiveness of a star-landmark measurement is also reduced
by uncertainties in those landmark positions being used as a naviga-

tional aid.

-33~



Uncertainties of lunar landmarks visible from earth are of the
order of 1000 meters in altitude and 465 meters in latitudinal, longi-
tudinal placement of the landmark.

All computer results were obtained using a simplified model of

the problem. Simplifying assumptions used were:

1) the moon was considered spherical
2) no gravity anomalies were considered
3) gyro drift associated with the inertial
reference system was neglected
4) the moon was considered non-rotating
5) the radar method of placing landmarks
was used. *
A reference trajectory which was circular at an altitude of 100
miles above the lunar surface and inclined to the lunar equator by
1 degree was chosen for the orbital model.
Landmarks (known and unknown) were placed equidistant about
the lunar equator.
The problem was initiated with the correlation matrix,

El_ O O
E = E5 O
O O O
_where
1 0 0
E1 = 0 1 0 mile'sz
0 0 1
and
.028 0 0
miles;2
E5 = 0 . 028 0 |
minute2
0 0 ., 028

sk

" This particular deterministic method was used because of its

simple adaptability to computer programming.
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For the known landmarks E9 was calculated using the uncertainties
discussed in this section. For the unknown landmark, the terms of
the correlation matrices were computed in accordance with section
3-F. During those time intervals during which no landmarks were
sighted the matrices E3, EG’ E7, E8 and Eg were, of course, zero
matrices.

4-C Error Reduction

All error reductions were computed using the following RMS
measurement errors:
1% 10”2 radians
. 02 range

angle error

n

radar error

period error .1 sec

Computer results were obtained for orbital error reductions
using both six dimensional techniques and nine dimensional techni-
ques. The results of the six dimensional analysis using star-land-
mark measurements during frontside transit and star-horizon
measurements during backside transit are compared to the results
of the nine-dimensional analysis using star-landmark measurements
during the entire orbit and star-horizon measurements during back-
side transit. This comparison is made in Fig. (4-1). Computer
results of RMS position error reduction by using backside of the moon
landmarks are compared to results not utilizing these landmarks.
This comparison is shown for the first and second orbits in Figs.
(4-2) and (4-3) respectively.

Results of RMS velocity error reduction for the above methods
are compared during first and second orbits in Figs. (4-4) and (4-5)
respectively. The same comparisons are made for the lunar model in
which the moon is one quarter dark. The results are given in Figs.
(4-6) through (4-8). RMS velocity error is shownonly for the first
orbit since variations from the results on the second orbit are in-
significant.

Error reduction in landmark placement for a fully vlighted moon
and a three quarter lighted moon using the nine dimensional techni-

que is given in Figs. (4-9) and (4-10) respectively.
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Computer results were also obtained forv RMS position error-s
using star-landmarks and period measurements during the second
orbit. These results are compared to results using only star-land-
mark measurements in Fig. (4-11). |

Finally, results were obtained for combined star—laﬁdmark,
star-horizon, and period measurements. A comparison is made
between these results and results of star-landmark and star-

horizon measurements in the six dimensional analyses. See Fig.
(4-12).
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Fig. (4-1)
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Fig. (4-4)
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Fig. (4-6)
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Fig. (4-7)
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Fig. (4-8)
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Fig. (4-9)
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Fig. (4-11)
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Fig. (4-12)
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Chapter 5

Conclusijons and Recommendations

1) Conclusions

The results shown in Fig. (4-1) clearly indicate that the pro-
cedyres developed in this thesis are more effective than the techni-
ques presently under consideration for determining the circum-
lunar orbit. This increased effe‘ctiveness', coupled with the ability
to adequately place lunar landmarks, definitely indicates that this
expanded guidance procedure should be the subject for a more de-
taiied study. |

Figures (4-2) through (4-12) graphically illustrate the results
of combinations of various navigational measuremehts and provide
enough comparative data to base several conclusions from them.,
First, in placing anhovvn landmarks, a significant gain in accuracy
.is realized by taking three sighﬁhgs to eaéh landmark instead of
two. Second, combining star-horizon measurements with backside
landmark sightings on the first orbit results in effective spacecraft
position and velocity error reduction. However, little is gained by
using star-horizon sightings on suceeding orbits. Third, the period
measurement technique developed in this thesis reduces errors along
the position and velocity vectors. This method, although limited to
use only after one complete orbit, reduces errors coﬁsiderably when
combined with other types of navigational measurements. Fourth,
the procedure for placing landmarks was proven to be quite effective.
The uncertainties in the backside landmarks after the second orbit
were less than the uncertainties in the frontside (known) landmarks
at the beginning of the first orbit.

2) Recomm'endations for Further Study

As indicated in Chapter 4, several simplifications were made.
These included ’
1) A spherical non rotating Moon
2) A perfectly circular orbit
3) No gravity anomalies
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4) No gyro drift in the stablllzed opt1cal -
radar platform . . R
5) Radar method used excluswely (See
Chapter 2)
“6‘) Cross- correlation between landmark pos1t1on ~
‘ errors and spacecraft pos1t10n and ve10c1ty
errors Were cons1dered accordlng to the

'assumptlons of Chapter 3.

" These s1mp11f1cat1ons were made because of the pressure of
time in some instances, and in others, because of the computer
programmmg advantages '

" To completely explore the procedures developed hereln would
Arequlre that the above s1mp11f1cat10ns be eéliminated. The authors
‘feel that the results so far presented clearly Justlfy the" addltlonal .
effort necessary to fully evaluate the expanded gu1dance techmques
~developed in this thesis.” ) ’

It should be noted that a maJOr assumpt1on was made in the

- treatment of the cross correlatlon terms developed in section 3-F.
" In that sectlon 1t was stated that the cross correlation between
‘orbital errors and 1andmark position errors went to zero durlng the
'trans1t from a spec1flc landmark back to the v101n1ty of the same

landmark on the next orbit. In order to use the methods developed
in this thes1s, ‘this assumptlon must be proved a valid one . This
proof would necessitate a 6+3n d1mens1onal analys1s Where nis

the number of landmarks considered.
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Appendix A

Development of Range Error

Taking the partial derivatives of Eq. (2-9) results in

GNP Tt

err(r,) = e er
2 1ﬂxz X9 Yo Y9
o (f) a(f)
o € rxl - € ryl
X 1 (A-1)

o(f) 9 (f)
+;'a*'g; 691+ 5'9——-2 () 9

where f is the right hand side of Eq, (2-9).

The error in range; can be determined in the same manner
where f is considered the right hand side of Eq. (2-9) with subscripts
1 and 2 interchanged )

Since the error analyses for err (rl) and err (rz) are accomp-
lished in an analogous manner, only err (rz) will be considered hence-
forth.

By completing the operations indicated in Eq. (A-1) the follow-

ing relationship are realized

- cos ¢
e = - (A-2)
Xq (cos d>1 cos 62 - cos qsz cos 91)
cos ¢
ar'af N € L (A-3)
Xy (cos ¢1 cos 62 - cos d)z cos 61)
. cos 0
e — (A-4)
Yo (cos qSl cos 92 - cos ¢, cOos 91)
- cos 8
arafﬁ - I 1 (A-5)
| (cos d’l cos 62 - cos qsz cos 91)
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(r ~r )siné
of 7 2 :
00

1+

1 (cos ¢, cos 6, - cos ¢, cos 91)

[ (er‘— rXZ) cos ¢y + (ry2 - ryl) cos 91 ] cos ¢, sin 01

(cos ¢; cos 6, - cos ¢, cos 91) B
. [(rxl - 1-4?,‘2) cos qsl + (?yz - r'y.l C.9S 91] cos d’l sin 92
5= - — (A-T7)
2 (cos ¢, cos B, - co cos 6 )2
o) ¢>1 S S d)z 0s 0 4
(r -1 ) sin ¢
of  _ X3 X 1
91 (cos q&l cos 92: 4,»4@;52 cos 6,)
[(rXl - rXZ) cos ¢; + (ryz - ryl)- co‘siel-] cos 0, sin '¢'1
‘ }(co’s'qS'l cos f, - ¢os ¢, cos 91)2- o (A-8)
| Ty, ) con ] eon gy
T, (cos ¢, cos B, - cos ¢, cos 91)2 (A-9)

Substituting Eqs. (A-2) through (A-9) into Eq. (A-1), relating

to r . throughthe transition matrix as derived in Chapter9 of

r
=2 1
reference 7 and using Eq. (A-1) in Eq. (2-5) results in a landmark
error which is a function only of the angular measurement errors

and orbital position errors.
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